
BrowserShield:
Vulnerability-Driven Filtering

of Dynamic HTML

Charles Reis
University of Washington

John Dunagan, Helen J. Wang, Opher Dubrovsky
Microsoft

Saher Esmeir
Technion

Web Based Attacks

• Web browser exploits are common
- Buffer overflows, ActiveX flaws, etc.

- 19 critical vulns, 8 patches in 2005
- 16 critical vulns, 7 updates in 2005

2

Patches aren’t Enough

• Patch installation often delayed
- Reboots, application restarts,

enterprise testing

• Dangerous time window
- Attackers reverse engineer patches

Patch
Release

Patch
Installation

3

Shield as a Front Line
• Vulnerability-Driven Filtering

[Wang et al, 04]

- Block dangerous traffic
using protocol analysis

• Easy to deploy or roll back

- Restarts unnecessary

4

Internet

Client
Shield

Apps

Shield as a Front Line
• Vulnerability-Driven Filtering

[Wang et al, 04]

- Block dangerous traffic
using protocol analysis

• Easy to deploy or roll back

- Restarts unnecessary

4

Internet

Client
Shield

Apps

Patch
Release

Patch
Installation

Shield as a Front Line
• Vulnerability-Driven Filtering

[Wang et al, 04]

- Block dangerous traffic
using protocol analysis

• Easy to deploy or roll back

- Restarts unnecessary

4

Internet

Client
Shield

Apps

Patch
Release

Patch
Installation

Shield

Useful for Browsers?

• Shield works for static HTML
• Script code can hide exploits

• Finding exploits is undecidable
- Can’t know deterministically

until runtime
5

eval(codeStr);?

Protect at Runtime

• Rewrite code to insert runtime checks
- Similar to Inline Reference Monitors

[Erlingsson, Schneider 00]

- Address challenges for JavaScript

• Protect with vulnerability policies

6

Script Interposition

BrowserShield

ActiveX

HTML +
JavaScript

• Focus on JavaScript

- VBScript, Flash
similar

• Can guard DOM,
ActiveX, extensions

7

Modifying Content

• Intercept HTML and JavaScript
• Rewrite into safe equivalents
• Apply policies at runtime

Web Server BrowserShield
Logic Injector

Policies

Client
Browser

HTML +
JavaScript

Shielded
HTML +
JavaScript

8

Deploying BrowserShield

• Can deploy anywhere before rendering:
- Firewall (protect many users)
- Browser extension (can see SSL traffic)
- Web publishers (community web sites)

9

Web Server ClientFirewall

Deploying BrowserShield

• Can deploy anywhere before rendering:
- Firewall (protect many users)
- Browser extension (can see SSL traffic)
- Web publishers (community web sites)

9

Web Server ClientFirewall

Deploying BrowserShield

• Can deploy anywhere before rendering:
- Firewall (protect many users)
- Browser extension (can see SSL traffic)
- Web publishers (community web sites)

9

Web Server ClientFirewall

Talk Outline

10

Motivation and Approach

Example Policy

BrowserShield Design

Evaluation

Talk Outline

10

Motivation and Approach

Example Policy

BrowserShield Design

Evaluation

Example: IFRAME Vuln.

• MS04-040 Vulnerability
- Buffer overrun if name and src

attributes are too long
- Affected iframe, frame, embed tags

11

<iframe src=”xxxxxxxx....”
 name=”xxxxxxxx....”>

IFRAME Policy

• Simple JavaScript
snippet to identify
exploits

• BrowserShield must
apply policy to all
vulnerable tags
- No false negatives
- No false positives

12

function (tag) {
 var len = 255;
 if ((contains(“name”, tag.attrs) &&
 tag.attrs[“name”].length > len) &&
 (contains(“src”, tag.attrs) &&
 tag.attrs[“src”].length > len))
 {
 tag.attrs = [];
 return false; // Exploit found
 }
 return true; // Safe
}

Talk Outline

13

Motivation and Approach

Example Policy

BrowserShield Design

Evaluation

Goals of BrowserShield

• Complete Interposition
• Tamper Proof
• Transparent
• Flexible Policies

14

Rewriting Logic

15

THTML

•Tokenize HTML
•Strip Exploits
•Wrap scripts for

later translation

x

Rewriting Logic

15

THTML

•Tokenize HTML
•Strip Exploits
•Wrap scripts for

later translation

x

Tscript

•Translate scripts
to access DOM
via interposition
layer

Rewriting Logic

15

Policies

•Apply policies
on all script
actions

•Recursively
apply THTML and
Tscript

THTML

•Tokenize HTML
•Strip Exploits
•Wrap scripts for

later translation

x

Tscript

•Translate scripts
to access DOM
via interposition
layer

Tscript Example

doc.write(obj[str]);

16

Tscript Example

doc.write(obj[str]);

16

document.write(arg);

Tscript Example

doc.write(obj[str]);

Object alias?

16

document.write(arg);

Tscript Example

doc.write(obj[str]);

Object alias? Method alias?

16

document.write(arg);

Tscript Example

doc.write(obj[str]);

Object alias? Method alias?

16

(Complete Interposition)

document.write(arg);

bshield.invokeMeth(doc, “write”, obj[str]);

Tscript Example

doc.write(obj[str]);

Object alias? Method alias?

16

(Complete Interposition)

bshield.invokeMeth(doc, “write”, obj[str]);

Tscript Example

doc.write(obj[str]);

Object alias? Method alias?

16

Reflection?
(Transparent)(Complete Interposition)

bshield.invokeMeth(doc, “write”, obj[str]);

bshield.invokeMeth(doc, “write”,
 bshield.propRead(obj, str));

Tscript Example

doc.write(obj[str]);

Object alias? Method alias?

16

Reflection?
(Transparent)(Complete Interposition)

bshield.invokeMeth(doc, “write”, obj[str]);

bshield.invokeMeth(doc, “write”,
 bshield.propRead(obj, str));

Tscript Example

doc.write(obj[str]);

Object alias? Method alias?

16

Same name space
(Tamper-Proof)

Reflection?
(Transparent)(Complete Interposition)

bshield.invokeMeth(doc, “write”, obj[str]);

bshield.invokeMeth(doc, “write”,
 bshield.propRead(obj, str));

Tscript Example

doc.write(obj[str]);

Object alias? Method alias?

16

Same name space
(Tamper-Proof)

Call THTML

(Flexible Policies)

Reflection?
(Transparent)(Complete Interposition)

Complete Interposition

• Rewrite and apply policy to:
- Function and method calls
- Object property reads/writes
- Object creations

17

Tamper Proof &
Transparent

• Hide BrowserShield code
- Rename variables, handle reflection

• Shadow copies of untranslated code
• Preserve context for “this”

18

Other Applications

• Useful beyond security policies:
- Link translation
- Dynamic content sandboxing
- Anti-phishing mechanisms

19

Talk Outline

20

Motivation and Approach

Example Policy

BrowserShield Design

Evaluation

Implementation

21

• Firewall-based prototype:

- ISA plugin: 2700 lines of C++

- Client library: 3500 lines of JavaScript

- Handled 3 types of vulnerabilities
(HTML, script, and ActiveX)

Vulnerability Coverage

• Studied all 19 IE vulns (8 patches) in 2005

22

HTTP filter +
Antivirus

BrowserShield +
HTTP + AV

Vulnerability Coverage 5 19

Patch Equivalence 1 8

Performance Overhead

• Firewall: 22% increase in CPU
• Client:

- Typical interpreter behavior
- 250 pages weighted by popularity,

measured 70 pages that worked

23

Client Latency

0%

20%

40%

60%

80%

100%

0 2 4 6 8 10 12 14 16 18

Time to Render (seconds)

P
e
rc

e
n

ta
g

e
 o

f
P

a
g

e
s

unmodified

browsershield

Figure 5: Latency CDF with and without BrowserShield

0

5

10

15

20

Pages

T
im

e
 t

o
 R

e
n

d
e
r

(s
e
c
o

n
d

s
)

browsershield: other overhead

browsershield: translation at client

unmodified

Figure 6: Breakdown of latency for slowest 10 pages un-
der BrowserShield

BrowserShield. Of this 6.3 seconds of increased latency,
we found that 2.8 seconds (45%) could be attributed to
the overhead of dynamically translating JavaScript and
HTML within IE. We attribute the remaining overhead to
effects such as the overhead of evaluating the translated
code, and the time to modify the HTML at the firewall.

We broke down the latency of dynamic translation for
both HTML and JavaScript into 2 parts each: time to
parse the JavaScript/HTML into an AST and convert the
modified AST back to a string, and the time to modify
the AST. We found that the time to parse the JavaScript
to and from a string was always more than 70% of the
overall latency of dynamic translation, and it averaged
80% of the overall latency. Figure 7 shows the JavaScript
parsing time versus the number of kilobytes. Fitting a
least-squares line to this data yields an average parse rate
of 4.1 KB of JavaScript per second, but there was signif-
icant variation; the slowest parse rate we observed was
1.3 KB/second.

Figure 8 shows the memory usage of page rendering
with and without BrowserShield. We found that private
bytes (memory pages that are not sharable) was the client
memory metric that increased the most when rendering
the transformed page. Private memory usage increased
on average by 11.8%, from 19.8 MB to 22.1 MB. This
increase was quite consistent; no page caused memory
usage to increase by more than 3 MB.

0

1

2

3

4

5

6

7

0 5 10 15 20 25

JavaScript (KB)

T
im

e
 t

o
 P

a
rs

e
 J

a
v
a
S

c
ri

p
t

(s
e
c
o

n
d

s
)

Figure 7: Latency of JavaScript parsing

0%

20%

40%

60%

80%

100%

0 5 10 15 20 25

Client Memory Usage (MB)

P
e
rc

e
n

ta
g

e
 o

f
P

a
g

e
s unmodified

browsershield

Figure 8: Memory Usage at Client

We also measured the increased network load over
a single run through the pages both with and without
BrowserShield. We measured an average increase of 9
KB, less than the standard deviation in the network load
over any individual trial due to background traffic during
our measurements. We expect BrowserShield rewriting
to only slightly increase the network load, because the
firewall just adds script wrappers, while the translation
itself happens at the client.

7 Related Work
We first compare with other protection systems in Sec-
tion 7.1. We then discuss BrowserShield’s relation to
the extensive work on code rewriting and interposition
in Section 7.2.

7.1 Remote Exploit Defense
In our prior work on Shield [43], we proposed using
vulnerability-specific filters to identify and block net-
work traffic that would exploit known software vulner-
abilities. Shield maintains protocol-specific state ma-
chines in an end-host’s network stack, allowing it to rec-
ognize when a packet will trigger a vulnerability. How-
ever, the Shield approach does not address dynamic con-
tent such as scripts in web documents, since it is undecid-
able whether script code in a document will eventually
exploit a vulnerability. BrowserShield shares Shield’s
focus on vulnerability-specific filters, but in contrast to

• On average, 94% increase (216% worst case)

- JavaScript-heavy pages still a challenge
24

Unmodified
BrowserShield

Conclusions

• Script rewriting can protect web clients
- Vulnerability-driven filtering
- Transforms content, not browsers

• General framework

25

Acknowledgments

Valuable feedback from Ulfar Erlingsson,
Bill Weihl, Alec Wolman, Steve Gribble,
and anonymous reviewers

26

