
Web Browsers as Operating Systems:
Supporting Robust and Secure Web Programs
Charles Reis
Final Exam - May 27, 2009

1

Web is Evolving

More complex, active content

Browser now in role of OS, but faces challenges

Browsers aren’t built for programs

Web content not designed to express programs

2

Pages Programs

Concrete Problems
Problems Contributions

Program Interference Multi-Process Browsers

In-Flight Page Changes Web Tripwires

XSS Script Whitelists

Browser Exploits BrowserShield

[EuroSys ’09]

[NSDI ’08]

[OSDI ’06]

3

Consider OS Landscape

Performance isolation

Resource accounting

Failure isolation

Clear program
abstraction

4

Browsers Fall Short

Unresponsiveness

Jumbled accounting

Browser crashes

Unclear what a
program is!

5

Preserve Web’s Strengths

Improve program support, but keep it:

Easy to publish content

Easy to compose content

Generally safe to explore

6

Thesis:

Support four architectural principles:

1. Identify program boundaries

2. Isolate programs from each other

3. Authorize program code

4. Enforce policies on program behavior

[HotNets ’07]
7

Adapt lessons from the OS
to improve robustness and security
of web browsers and web content

Outline

Web Tripwires

Additional Contributions

Future Directions

8

Browser Architecture: Chromium

Identify program boundaries

Isolate programs from each other

Programs in the Browser

Mail

Mail

Consider an example
browsing session

Several independent
programs

Doc List Doc

Doc

News Article

9

Blog

Monolithic Browsers

Mail

Mail

Most browsers put all
pages in one process

Poor performance
isolation

Poor failure isolation

Poor security

Should re-architect
the browser

Doc List Doc

News Article

10

Blog

Process per Window?

Breaks pages that
directly communicate

Shared access to
data structures, etc.

Fails as a program
abstraction

Mail Doc List Doc

11

Mail

News Article

Blog

Need a Program Abstraction

Aim for new groupings that:

Match our intuitions

Preserve compatibility

Take cues from browser’s existing rules

Isolate each grouping in an OS process

Will get performance and failure isolation,
but not security between sites

Doc List Doc

12

Outline

Program Abstractions

Browser Architecture

13

Program Isolation

Evaluation

Ideal Abstractions

Web Program

Set of pages and sub-resources providing a service

Web Program Instance

Live copy of a web program in the browser

Will be isolated in the browser’s architecture

Intuitive, but how to define concretely?

14

Compatible Abstractions

Three ways to group pages into processes:

1. Site: based on
 access control policies

2. Browsing Instance:
 communication channels
 between pages

3. Site Instance:
 intersection of first two

15[EuroSys ’09]

1. Sites

Same Origin Policy
enforces isolation
(host+protocol+port)

Actual limit is
Registry-controlled
domain name

Site: RCDN + protocol

16

Mail Doc List Doc

Mail

News Article

Blog

http://bbc.co.uk

https://zoho.com
http://blogger.com

Mail Doc List Doc

Mail

News Article

Blog

2. Browsing Instances

Which pages can talk?

References between
“related” windows

Parents and children

Lifetime of window

Browsing Instance:
connected windows,
regardless of site

17

window.opener

w = window.open(...)

3. Site Instances

Site Instance:
Intersection of site &
browsing instance

Safe to isolate from
any other pages

Compatible notion of a
web program instance

18

Mail Doc List Doc

Mail

News Article

Blog

Outline

Program Abstractions

Browser Architecture

19

Program Isolation

Evaluation

Multi-Process Browser

Browser Kernel

Storage, network, UI

Rendering Engines

Web program and
runtime environment

Plug-ins

Browser Kernel

Plug-in
Rendering

Engine
Rendering

Engine

20

Modules in Separate OS Processes

Implementations

Konqueror Prototype (2006)

Proof of concept on Linux

Chromium (Google Chrome, 2008)

Added support for Site Instance isolation

21

Chromium Process Models

1. Monolithic

2. Process-per-Browsing-Instance

New window = new renderer process

3. Process-per-Site-Instance (default)

Create renderer process when navigating cross-site

4. Process-per-Site

Combine instances: fewer processes, less isolation

22

Browser Kernel

Plug-in
Rendering

Engine
Rendering

Engine

Browser Kernel

Plug-in
Rendering

Engine

Outline

Program Abstractions

Browser Architecture

23

Program Isolation

Evaluation

Robustness Benefits

Failure Isolation

Accountability

Memory Management

Some additional security
(e.g., Chromium’s sandbox)

24

Browser Kernel

Plug-in
Rendering

Engine

Sandbox

Rendering
Engine

Sandbox

Performance Impact

Responsiveness

No delays while other pages are working

Speedups

More work done concurrently, leveraging cores

Process Latency

100 ms, but masked by other speedups in practice

25

Memory Overhead

Robustness benefits
do have a cost

Reasonable for
many real users

26

0

32.5

65.0

97.5

130.0

1 2 3 4 5 6 7 8 9 10

M
em

or
y

(M
B

)

Number of Popular Pages

Monolithic Chromium Multi-Process Chromium

Summary

Browsers must recognize programs to support them

Identify boundaries with Site Instances

Compatible with existing web content

Prevent interference with process isolation

27

More major browsers becoming multi-process:
IE8, possibly Firefox

Outline

Browser Architecture

Additional Contributions

Future Directions

28

Web Tripwires

Help publishers detect unauthorized code

Web Program Integrity

Can users or publishers trust web program contents?

HTTP can be modified in-flight

Changes become part of the site instance

ISP

Server

Browser

29

Is this a concern?

Measurements say it is!

Of 50,000 clients, 1% saw in-flight changes

Results in unauthorized program code

Ads, exploits, broken pages, new vulnerabilities

30

Detecting Page Changes

Can detect with JavaScript

31http://vancouver.cs.washington.edu

✦ Built a Web Tripwire:

✦ Runs in client’s browser

✦ Finds most changes to HTML

✦ Reports to user & server

ISP

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

Measurement Study

Wanted view of many clients on
many networks

http://vancouver.cs.washington.edu

✦ Posted to Slashdot, Digg, etc.

✦ Visits from over 50,000
unique IP addresses

✦ 653 reported changes

32

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

Diverse Changes Observed

Server ISP Firewall

33http://vancouver.cs.washington.edu

BrowserProxyBot

Ad Injection
(Free wireless,
NebuAd, etc)

Security Checks
(Enterprises) Exploits

(ARP poisoning)

Ad / Popup
Blockers
(on client)

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

The best intentions...

Bugs introduced

Web forums broken by popup blockers

Vulnerabilities introduced

Ad blocker code vulnerable to XSS

User’s web programs are the victims!

34http://vancouver.cs.washington.edu

Proxy

URL

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

Web Tripwires for Publishers

HTTPS too costly for some sites

Can detect changes with JavaScript

Easy for publishers to deploy

Configurable toolkit

Web tripwire service

http://vancouver.cs.washington.edu 35

http://vancouver.cs.washington.edu
http://vancouver.cs.washington.edu

Summary

Not safe to blindly patch code of web programs

Many parties with incentives to do so

Publishers may detect it with web tripwires

36

Outline

Browser Architecture

Web Tripwires

Additional Contributions

Future Directions

37

Script Whitelists

Injected scripts hijack pages

Server defenses: fail-open

Authorize code with
whitelists: fail-closed

Enforced by browser

Handles realistic pages

XSS

38

BrowserShield

Block exploits of known
browser vulnerabilities

Interpose to enforce
flexible policies

Rewrites JavaScript
code in-flight...

Has influenced Live Labs’
Web Sandbox

JS Interposition Layer

BrowserShield Rewriter

39

[OSDI ’06]

Thesis:

Added support for four architectural principles:

1. Identify program boundaries

2. Isolate programs from each other

3. Authorize program code

4. Enforce policies on program behavior

40

Adapt lessons from the OS
to improve robustness and security
of web browsers and web content

Outline

Browser Architecture

Web Tripwires

Additional Contributions

Future Directions

41

Future Browsers & Programs

Convergence of Browsers and OSes

More powerful features for web programs

More effective program definitions

Potential for new OS mechanisms

Access programs in cloud from diverse devices

Trust models? Customization?

42

Better Support for Principles

Defining explicit boundaries for web programs

e.g., Alternatives to Same Origin Policy

Securely + Compatibly isolating Site Instances

Authorizing active code of any format

Enforcing policies on content, plug-ins, extensions

43

Conclusion

Web is becoming an application platform

Browser architectures must support programs

Web publishers must protect content

Great opportunity to reshape the web

44

Compatibility Compromises

Coarse granularity

Some logical apps grouped together (instances help)

Imperfect isolation

Shared cookies, some window-level JS calls

Not a secure boundary

Must still rely on renderer to prevent certain leaks

46More on Security...

Relevant for security?

Pages are free to embed
objects from any site

Scripts, images, plugins

Carry user’s credentials

Inaccessible info within
each Site Instance

Compatibility makes us
rely on internal logic

mail.com images.com

evil.com

evil.com

47Back...

Implementation Caveats

Sites may sometimes share processes

Not all cross-site navigations change processes

Frames still in parent process

Process limit (20), then randomly re-used

48

Performance Isolation

Responsive while other
web programs working

0

1,000

2,000

3,000

4,000

With Top 5 Pages With Gmail

66

3,307

1,408

Avg Click Delay on Blank Page

Ti
m

e
(m

s)

Monolithic Chromium
Multi-Process Chromium

49

Compatibility Evaluation

No known compat bugs due to architecture

Some minor behavior changes

e.g., Narrower scope of window names:
browsing instance, not global

50

“Pandora” “Pandora”

?

Related Architecture Work

Internet Explorer 8

Multi-process architecture, no program abstractions

Gazelle

Like Chromium, but values security over compatibility

Other research: OP, Tahoma, SubOS

Break compatibility (isolation too fine-grained)

51

